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ABSTRACT

Stimulated by recent work by Gregory and Qu, it is shown that the limit of local
corner cutting is a continuously differentiable curve in case the corners of the iterates
become increasingly flat.
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\L J
Local corer cutting and the smoothness of the limiting curve

/ Carl de Boor
It was proved in- that corner cutting of any kind converges to a Lipschitz-continuous

curve, but the question of how one might guarantee that the limiting curve be smoother
than that was not considered there. Recently, Gregory and Qu [GQ] took up this ques-
tion and established sufficient conditions for a certain systematic and local corner cutting
scheme to give a limiting curve in C". Since [GQ] use the same parametrization of the
successive broken lines that made the argument in [B] so simple, I became intrigued and
took a look at what one might say in greater generality. Specifically, I looked for conditions
under which continuous differentiability of the limiting curve could be inferred from the
fact that the comers of the broken lines flatten out eventually.

It is the purpose of this note to prove that the limit of any 'local' corner cutting
scheme is in Ce'Provided the comers of the broken lines become increasingly flatter. A
simple example is given to show that this condition is not necessary, while another simple
example shows that, without 'localness', the condition is not sufficient, in general. Finally,
as an application, Gregory and Qu's nice argument in [GQ] is redone. ika -

1. Cutting corners

In this section, we recall the setup of [B].
We deal with a sequence (b,) 0 of broken lines in which, for n > 0, b, is obtained

from b,,- 1 by a 'cut', i.e., by replacing a curve segment by the subtended secant to the
curve. This means that all the vertices of bn lie on b,,- 1, i.e., b,, can be thought of having
been obtained from b,- 1 by interpolation. This observation is used in [B] to prove that, no
matter just how the cutting was done to generate the sequence (b,,) from an initial broken
line b0 with finitely many vertices, b, := lim,,-o. b,, exists as a Lipschitz-continuous curve
which is approached uniformly by b,,, i.e., lim,,-. dist(b,, b.) = 0.

The argument in [B] was based on parametrizing the curves appropriately. If (vi) is
the sequence of vertices of bn and (ti) is a corresponding arbitrary increasing sequence of
numbers, then b,, can be parametrized by

(11)b,(t : v-Iti - t +it - ti-I ti-I <5 t < ti, all i.
ti t-ti

Since b,, is obtained from b,,- 1 by interpolation, it is natural to choose the sequence (ti)
in dependence on the parametrization of b,,- 1, i.e., so that b,,(ti) = vi = bnl(ti) for all i.
With this,

bn = Pnbn-l,

where Pn is broken line interpolation at the points (ti). Therefore, ultimately, bn =
P - - -Pbo, with Pn ... P1 a linear map. Hence, although the process of generating the

sequence (bn) is nonlinear (in that it is quite arbitrary), once we have decided on how to
cut, we can think of each bn as a linear function of b0 . In particular, writing b0 in any one
of many reasonable ways as a sum

bo Wi wii
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of scalar-valued functions wi with vector coefficients wi E IRd, we have

b.= wiP .. Pwi,

and questions of convergence or of smoothness of the limit can be settled by settling
them for the (presumably simpler) sequences (P,... PIlo), with W any one of the Wi. A
particularly simple choice for the Wi are the truncated powers (.- ri)+ (in addition to the
constant function), and this leads to the conclusion that the nature of the limiting curve
can be understood if one understands what the particular comer cutting process does to
the standard corner, i.e., the broken line with vertices (0, 0), (1, 0), (2, 1).

2. Examples

We are now ready to consider the smoothness of the limiting curve, having understood
that it is sufficient to consider the case that b0 is a piecewise linear (real-valued) function
on some interval. Then each b, is of the same nature, and its derivative, d := b,, is a
step function. In the notation adopted in the preceding section,

(2.1) d . _(" - ti)° jump,, d.,

with jumped:= d(t+) - d(t-) the difference between the limit from the right and the limit
from the left at t. We can take the absolutely largest jump, i.e., the number 11jump)d, 110,
as a measure of the extent to which bn fails to be in C1 .

ra

hhrJ

I I

(2.2) Figure The change in the derivative as the result of a corner cut. The
two areas are of equal size.

It will be useful to visualize the process by which d, is obtained from d,,-,. Suppose
that b, is obtained from b.- 1 by replacing b,,-. 1 on [s, t] by the linear interpolant to b.- 1
at s and t. Then

It (d - dn-1 )(x)dx = (bn - bn- 1)(t) - (bn - bn- 1)(s) =0.
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Also, d, is a constant (viz., the difference quotient [s, t~b.- 1) on fs, t]. If now b,,- 1 has
just one vertex in [s, t], then d.-I has just two steps there, hence d, - d,- 1 has just two

steps there and, as f (d,- d,,-,) = 0, the two rectangles which make up this integral must
balance; see (2.2)Figure.

More precisely, let J be the jump in d,,-, at that sole vertex in [s, t], let 1 and r be the
parametric distances of the corner from its left and right neighbor, and assume that the
two new vertices (which replace the vertex being cut off) occur at parametric distances 1,3
and ra, respectively (with a, 3 E [0,1]). Then the two new jumps are of size h1J and hrJ,
with hl + hr = 1 and lhl =. rahr, or,

ra(2.3) hi = l,8 + rah,

(2.4) Figure These uniformly nonsmooth broken lines converge to a smooth limit.

As a first example, we show that the maximum jump need not go to zero for the limit
function to be C1 . As shown in (2.4)Figure, the limiting function is smooth (it is the
zero function), while the maximum jump in the first derivative stays above 1 (in absolute
value). Note that, in this example, we have done two cuts simultaneously, i.e., in terms of
the setup adopted earlier, we are showing only every other iterate. Note also that, strictly
speaking, each of our cuts involves two corners. It will be important later on to know
that such an example (of a limiting curve being smooth even though the absolutely largest
jump in the derivative of the iterates is bounded away from zero) can also be given when
each cut involves only exactly one comer. Such an example can be supplied by applying,
e.g., Chaikin's algorithm to the initial broken line in the above example, except that the
points on the two segments flanking the middle segment are chosen closer and closer to
the farther endpoint.

Finally, we illustrate the fact that having the maximum jump in the first derivative
go to zero is, in general, no guarantee that the limiting curve is C1 . For that, we consider
the 1-parameter family of functions f, (see (2.6)Figure) given by the rule that

0, t < 0;
(2.5) M 0(t) := at2, 0 < t __ t.;

1 + (t - 1)2at_, t t,

with ta := 1 - %/1-1/a. One verifies that, for a > 1, f , is in C', and that f,,

converges, on [-1,1] say, monotonely and uniformly to the 'standard comer' which is not

3



C 1. The actual example is provided by replacing selected fo, by interpolating broken lines
of sufficiently fine spacing to make the jumps in the first derivatives as small as one pleases.

(2.6) Figure These smooth broken lines converge monotonely to a nonsmooth one.
(The circles are the points (to, f,(t,)) of (2.5).)

Nevertheless, if the comer cutting is local, then having the absolutely largest jump in
the first derivative go to zero does imply that the limiting function is in C 1. This is the
content of the next section.

3. Local corner cutting

We say that the comer cutting is local in case any cut involves exactly one comer.
This means that the cut endpoints must lie in the interior of the two segments which form
the comer being cut. Schemes that cut all corners simultaneously fall into this category as
long as the cuts of neighboring comers do not share an endpoint. For we can then think
of them as having been carried out one cut at a time. In particular, the comer cutting
scheme considered in [GQ] is local in this sense, as are the schemes considered in [R] so
many years ago. It follows that every segment, of the original broken line as well as of any
subsequently generated broken line, is tangent to the limiting curve, hence the situation
depicted in (2.6)Figure could not have been generated by local comer cutting.

(3.1)Theorem. The limiting curve produced by a local corner cutting scheme is C' in
case the maximum jump in the first derivative of the iterates b goes to zero as n -- o.
The converse holds in case bo is convex and for arbitrary corner cutting.

Proof. It is sufficient to consider the special case that b0 is the 'standard comer'.
Then bo is convex, hence so are all the iterates, with bn growing uniformly, and pointwise
monotonely, toward the limit function b, which is also convex. Let b be one of the iterates.
Then d:= b is a monotone increasing step function. Recall from (2.1) that

i ~d =3.'-tj) . jumpt, d,
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with 0 < ti < ... < tn < 2 its breakpoints. We consider also the two step functions d+

and d, given by the rule
m

d= tFl)+ jump, d,

with to := 0 and (for the sake of neatness) tm+l := 2. Then jjd+ - d-jj o < 2j]jumpodJj0o,

while d- < d < d+ pointwise, since d is monotone increasing.

(3.2) Figure Corner cutting contracts the 'envelope' formed around the
derivative d by the step functions d- and d+ .

Further, if b* is obtained from b by cutting off exactly one corner, and d* is, correspondingly,
the derivative of b*, then (see (3.2)Figure)

(3.3) d- <_ (d*)- __ (d*)+ < d+ .

This implies that the first derivative of all subsequent iterates lies between d- and d+ .
Hence, if Ijjump 0 dnIjo -o 0 as n --+ oo, then (d) is a Cauchy sequence in the complete
normed linear space of all bounded functions on [0, 2] (with the max-norm). Consequently,
d = b' converges uniformly to some bounded function d.. Now consider the modulus of
continuity w,, of this limiting function. For any h > 0 and any n,

, o(h) = sup (doo(t) - do(s)) < sup (d+(t) - d-(s)) =: 7,(h).
O<t-s<h O<t-a<h

Note that ,, is a nondecreasing step function, with 0 < U,,(0+) = supj(d,(ti+2+) -

dn(t.- 1-)) _< 311jumpodnlloo - 0 as n --+ oo. Consequently, for every e > 0, we can
find n and 6 > 0 so that, for all h <6, ,,(h) < e. This proves that w,,o(0+) = 0, and so
establishes that do. is continuous.

We now know that b, converges uniformly to some Lipschitz-continuous function bo,,
while d b" converges uniformly to some continuous function d.. It is a standard result
that, therefore, b = d,,, i.e., the limiting function bo, is in C'.

For the converse, assume that the sequence (bn) of convex broken lines, all defined on
the interval [0,2] say, converges uniformly to some function b. Assume further that b is
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continuously differentiable at the interior point p. This means that, for some modulus of
continuity w (i.e., some positive function w on (0, oo) with w(O+) = 0),

[t, p]b := (b(t) - b(p))/(t - p) = b'(p) + O(w(It - pl)).

l Now consider J := jumppb,, for some n, and let e := 1Ib - b.1l.. Then, for any small
positive h,

0 < J < [p + h,p]b, - [p,p - h]b,, < [p + h,p]b - [p,p - h]b + 4e/h = O(w(h)) + 4e/h.

Since w(0+) = 0 and e = lib - bnI1 -+ 0 as n -- oc, this implies that J must be small when
n is large. 4

By going to a larger envelope, the argument can be applied to somewhat more general
corner cutting, viz. one in which no cut reduces the number of comers. Since each cut
generates two comers, this means that any cut is restricted to cut away no more than two
corners. To handle this more general situation, one would change the definition of d + to

d = E(- - t1 :F2)+ jurnptd,
j=1

with further adjustments at the endpoints.

(3.4)Corollary. The limiting curve produced by a corner cutting scheme which never
cuts across more than two corners is C1 in case the maximum jump in the first derivative
of the iterates bn goes to zero as n --+ 00.

4. The Gregory-Qu result

As an application of (3.1)Theorem, we now consider the Gregory-Qu scheme, in which
b, is obtained from b,- 1 by a simultaneous, non-interfering, cutting of all corners; hence
the scheme is local in the sense defined earlier. In fact, [GQ] assumes that the new vertices
generated are in the interior of old segments (i.e., that all a and,) are positive, in the
notation used there and introduced below). But if we allow also trivial cuts, i.e., cuts that
begin and end at the same vertex (a = 0 or 83 = 0), then this scheme models any local
corner cutting.

To prove that the limit is in C1 , it is therefore sufficient to prove that the jumps in
the first derivative go to zero. For this, we discuss the scheme in terms of the step function
which is the first derivative of the broken line in question. A look at (4.1)Figure might be
helpful.

The single jump of height J, with left and right segments of length 1, r, spawns
two jumps, a left one of height Jh, with hi := ra,./(l#1 + ra,) and with segments I :=
1(1 - al - /3k) and rl := I#, + ra, and a right one of height Jh,., with hr: 1 - hl and
with segments 1, := ri and r,: r(1 - ar - fir). Since

+ 1 1
= 1 + ( /3i/a)l/r -1-h,--- 1- 1 + (cxr/i)r/l
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(4.1) Figure The change in the derivative due to one step of the Gregory-Qu
process.

we can be assured that ht and hr are uniformly smaller than 1 (hence the limiting curve
is in C1) provided we can show that the local mesh ratio I/r is bounded away from 0 and
o. For this, consider the local mesh ratios Ih/rI and lr/rr spawned by the cutting of this
corner. We find

41/r = l(1 - a- i) = L(l/r),i/li + rt

with

L(t) t(1 - at -00
01 + oar

This function is increasing on [0, oo), starting at 0 with a value of 0 and a slope of L'(0) -
(1 - a - I I)/a, at 0 and taking the limiting value L(oo) = (1 - at - 01)/31. Consequently,
L maps the interval (0, oo) into the interval [0, L(oo)]. Further, if L'(0) > 1, then L has
an attracting fixed point in that interval, viz. the point F := (1 - at - 81 - ar)/,31 =
(L'(0) - 1)ar/O1 . This means that L maps any interval [1/M, M] containing F (and
contained in [0, oo]) into itself.

F

(4.2) Figure The function L contracts around the point F.
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By symmetry, rr/Ir = R(r/l), with

t(1 -ar-3)R(t) := * -a r
/0 + tar

a function which maps [0, oo) into the interval [0, R(oo)], and which has the fixed point
G:= (1 -C/ - 0, -,8)/ar = (R'(0) - 1),1/a, in case R'(0) = (1 - C. -,6r)/01 is greater
than one. This means that R maps any interval [1/M, M] containing G (and contained in
[0, oo)) into itself.

We conclude that the local meshratios are bounded away from 0 and oo provided the
fixed points F and G are eventually bounded away from 0 and oo. As [GQ] point out, this
can be guaranteed by having a and /3 eventually bounded away from zero, i.e. having both
a := lim inf a and /3 := lim inf # be positive, and having L'(0), R'(0) > 1 when formed
with al, a, = ZF:= limsup a and /3I, f. = / := limsup/P. This amounts to the conditions

• 0 ~~~< a,-and / - -

When these conditions are violated, we cannot be certain that the local meshratios
stay away from 0 or oo, hence the reduction factors hi or h, may come close to 1. This
does not, of itself, imply that the limiting curve has comers. But the above discussion is
sufficient to show that the limiting curve has corners if L'(0) or R'(0) are uniformly below
1.

We discuss this only for the case of constant a and constant /3. Assume, for example,
that a and /3 are such that

S <1.
R'(0) <1

Then, starting with the 'standard comer', the cutting process generates a sequence of
vertices proceeding to the right with associated local mesh ratios r/l equal to

R(1), R 2(1) = R(R(1)), R3 (1),...

which decay geometrically to zero. In fact, R'(1) - (R'(0))n as n 0 oo. The corresponding
reduction factors therefore satisfy
(4.3) h(n) = 1 = l),) 1_a/(RO)n

S1 + (/,/)R-(1) = 1 - (a/fl)R"(1) + O((R"(1)) 2 ) 1 - (a/)(R'(0))".

We want to show that the corresponding sequence of jumps is bounded away from zero.
Since this is a decreasing sequence, it is sufficient to show that its limit, the infinite product

00JJ hf"),
n=1

is positive. This is the same as proving that the infinite series

Zln hn)
n=1
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is finite. From (4.3), ln ~ -(h /(n)(R'(O))", i.e., the terms of the sum behave like that
of a convergent geometric series, hence the series converges.

The foregoing analysis also explains the fractal nature of the resulting curves (when
using constant a and P). For it shows that the height of a particular jump or the meshratio
at a particular breakpoint of the nth iterate is the result of two contending fixed point
iterations, L and R, with the influence of each entirely determined by the particular se-
quence of right and left turns taken to reach the breakpoint in question from the original
breakpoint. In particular, we expect any collection of jumps sharing the first few of these
turns to look like any other collection of jumps sharing the first few of these turns.

It would be interesting to explore further special situations when the fixed points
coincide. For example, both fixed points (for L and R) are 1 exactly when a + /3 = 1/2.
In this case, all the mesh ratios are the same, hence the left factors hi are all the same
as are all the right factors hr. The requirement that h = hr is satisfied exactly when
a =3. Thus the imposition of both requirements leads to a = 1/4 =/3 which is Chaikin's
algorithm.
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